If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w^2-3=0
a = 3; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·3·(-3)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6}{2*3}=\frac{-6}{6} =-1 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6}{2*3}=\frac{6}{6} =1 $
| 2(x+5)/2=8 | | 6+3x=x+16 | | -10(-4)+3y=5 | | 3(2x-5)=9(10-x | | 12x^2-21x-90=0 | | 95=-7(3-4x)+4 | | 19=v/2-8 | | -3=9x/7+3 | | 354=-5(8m-2)-3m | | 6x+x-6=6x+5 | | 48=4v+8 | | −3(x–2)+4=12(−6x+4) | | -26+3n=-9(8n-5) | | 6(6a-6)=-144 | | 5(1+4m)=145 | | 1/2(x−38)=33+7x | | 1/4(12x−4)+3=−2x+12 | | 11+5q=56 | | 14(12x−4)+3=−2x+12 | | 5(3a-2)=110 | | 8(x-3)=6(x-1) | | 1=p+1/15 | | 1/2y=4/3 | | -3(b+3)+4(6b+1)=79 | | 1/2z+3-z=-2 | | 1/3(6x+3)=4x+1-2x | | 4x+45+5x-8=180 | | 6/2x=2 | | 42+4x-x=12 | | 6=y÷4-2 | | 4x-8x-4.9=-x-3x-12.3 | | -15x-20=-13×+40 |